Integration of first and second generation bioethanol processes using edible filamentous fungus Neurospora intermedia
نویسندگان
چکیده
Establishing a commercial, lignocellulose-based, second-generation ethanol process has received several decades of attention by both researchers and industry. However, a fully economically viable process still remains a long-term goal. The main bottleneck to this achievement is the recalcitrance of lignocellulosic feedstocks, although there are several other factors, such as the huge investment required for second-generation ethanol facilities. An intelligent alternative solution discussed in this thesis is an integrated approach using first-generation ethanol plants for second-generation processes. Wheat is the major feedstock for first-generation ethanol in Europe; therefore, wheat-based lignocellulose waste, such as wheat straw, bran, and whole stillage fiber (a waste stream from firstgeneration wheat-based ethanol plants) was the primary focus of the integration model in this thesis. Since the major share of first-generation ethanol plant economics focuses on the animal feed DDGS (Distillers’ dried gains with solubles), the integration of lignocellulose should be designed in order to maintain DDGS quality. An ethanol-producing edible filamentous fungus, Neurospora intermedia, a potential protein source in DDGS, was considered for use as the fermenting microbe. The morphological and physiological aspects of this fungus were studied in the thesis, leading to the first report of fungal pellet development. An alternative approach of using dilute phosphoric acid to pretreat lignocellulose, as it does not negatively affect fungal growth or DDGS quality, was demonstrated in both the laboratory and on a 1m pilot scale. Furthermore, the process of hydrolysis of pretreated lignocelluloses and subsequent N. intermedia fermentation on lignocellulose hydrolysate was also optimized in the laboratory and scaled up to 1 m using an in-house pilot-scale airlift bioreactor. Fungal fermentation on acidpretreated and enzyme-hydrolyzed wheat bran, straw and whole stillage fiber resulted in a final ethanol yield of 95%, 94% and 91% of the theoretical maximum based on the glucan content of the substrate, respectively. Integrating the firstand second-generation processes using thin stillage (a waste stream from first-generation wheat-based ethanol plants) enhanced the fungal growth on straw hydrolysate, avoiding the need for supplementing with extra nutrients. Based on the results obtained from this thesis work, a new model for integrated firstand secondgeneration ethanol using edible filamentous fungi processes that also adds value to animal feed (DDGS) was developed.
منابع مشابه
Pigment Production by the Edible Filamentous Fungus Neurospora Intermedia
The production of pigments by edible filamentous fungi is gaining attention as a result of the increased interest in natural sources with added functionality in the food, feed, cosmetic, pharmaceutical and textile industries. The filamentous fungus Neurospora intermedia, used for production of the Indonesian food “oncom”, is one potential source of pigments. The objective of the study was to ev...
متن کاملIntegrated Process for Ethanol, Biogas, and Edible Filamentous Fungi-Based Animal Feed Production from Dilute Phosphoric Acid-Pretreated Wheat Straw
Integration of wheat straw for a biorefinery-based energy generation process by producing ethanol and biogas together with the production of high-protein fungal biomass (suitable for feed application) was the main focus of the present study. An edible ascomycete fungal strain Neurospora intermedia was used for the ethanol fermentation and subsequent biomass production from dilute phosphoric aci...
متن کاملEthanol and Protein from Ethanol Plant By-Products Using Edible Fungi Neurospora intermedia and Aspergillus oryzae
Feasible biorefineries for production of second-generation ethanol are difficult to establish due to the process complexity. An alternative is to partially include the process in the first-generation plants. Whole stillage, a by-product from dry-mill ethanol processes from grains, is mostly composed of undegraded bran and lignocelluloses can be used as a potential substrate for production of et...
متن کاملTranscriptional comparison of the filamentous fungus Neurospora crassa growing on three major monosaccharides D-glucose, D-xylose and L-arabinose
BACKGROUND D-glucose, D-xylose and L-arabinose are the three major monosaccharides in plant cell walls. Complete utilization of all three sugars is still a bottleneck for second-generation cellulolytic bioethanol production, especially for L-arabinose. However, little is known about gene expression profiles during L-arabinose utilization in fungi and a comparison of the genome-wide fungal respo...
متن کاملIntegration of the first and second generation bioethanol processes and the importance of by-products.
Lignocellulosic ethanol has obstacles in the investment costs and uncertainties in the process. One solution is to integrate it with the running dry mills of ethanol from grains. However, the economy of these mills, which dominate the world market, are dependent on their by-products DDGS (Distiller's Dried Grains and Solubles), sold as animal feed. The quality of DDGS therefore must not be nega...
متن کامل